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We study the Curie-Weiss version of an Ising spin system with random, 
positively biased couplings. In particular, the case where the couplings e~ take 
the values one with probability p and zero with probability l - p ,  which 
describes the Ising model on a random graph, is considered. We prove that if 
p is allowed to decrease with the system size N in such a way that Np(N) ~ 0o 
as NT 0% then the free energy converges (after trivial rescaling) to that of the 
standard Curie-Weiss model, almost surely. Similarly, the induced measures on 
the mean magnetizations converge to those of the Curie-Weiss model. 
Generalizations of this result to a wide class of distributions are detailed. 

KEY WORDS:  Curie-Weiss model; random graphs; disordered magnets; 
mean-field theory. 

1. I N T R O D U C T I O N  

In recent years there has been a revival of interest in the Curie-Weiss (CW) 
model (also called "mean-field model") of ferromagnets and some of its 
derivatives (e.g., the Curie-Weiss Potts model, etc.)J 6'7) The use of large- 
deviation techniques (see, e.g., the book by Ellis ~5) for a review in this 
context) has made it possible to give a very neat probabilistic description 
of the thermodynamic limit for such models, which has made them some 
of the best understood models in statistical mechanics. Interestingly, these 
techniques have even allowed one to treat several types of disordered CW 
models: Amaro de Matos and Perez ~ have analyzed the CW model with 
a random magnetic field term and not only constructed the thermodynamic 
limit, but also obtained results on the fluctuations of various thermo- 
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dynamics quantities. The infinite-volume Gibbs states for this model have 
been studied recently by Amaro de Matos ei  al. ~15) Another model that has 
been solved exactly is the Hopfield model of neural networks (under some 
restriction on the number of stored patterns), which can be seen as a CW 
model with a particular type of random exchange coupling. ~11'9) Of course, 
the possibly most celebrated mean-field model, the Sherrington Kirkpatrick 
model ~19) for spin-glasses, still awaits a rigorous mathematical analysis, in 
spite of many efforts and the existence even of an "exact" solution based on 
what is called the "replica symmetry breaking scheme" (for a review and 
references see, e.g., the book by M6zard et  a/jl6)). 

A simpler model than spin glasses, but nonetheless one with genuine 
"bond disorder," is the so-called "dilute ferromagnet" (see, e.g., Fr6hlich's 
lecture ~8) for a review). Here the exchange couplings between spins are 
random, but strictly (or at least predominantly) ferromagnetic. Using 
techniques from percolation theory, it has been proven ~1~ that at low 
temperatures this model exhibits a ferromagnetic phase, provided only the 
nonzero bonds percolate. On the other hand, critical properties of this 
model, in particular in dimension d = 2, are heavily disputed in the physics 
literature.~4.18.13,23) Surprisingly enough, it appears that the CW version of 
this model has so far not been investigated, and this is what we propose to 
do in this article. More precisely, we will show that under some (fairly 
weak and natural) assumptions on the disorder, an exact solution in terms 
of the quantities of the standard CW model can be given. It should be 
noted that our present results are, in probabilistic language, on the level of 
"laws of large numbers"; fluctuation theorems will be left to further 
investigation. 

To be able to state our results in a precise way let us given a definition 
of the models we will treat. For a given positive integer N, let A denote the 
set A = {1,..., N}. To each site i e A  is associated an Ising spin variable 
ai~ { - 1 ,  1} and a spin configuration on A is given b y  the sequence 

= {ffi}i~A" The configuration space is denoted by F N =  {--1, 1} N. We 
recall that in the standard CW model the interaction energy of a spin 
configuration a ~ F N is obtained by coupling each pair of spins at sites (i, j)  
in A x A with equal strength 1/(2N), that is to say 

( i , . j )~  A x A i ~  A 

1 
- Z o-~o-~-h Z o-i (1.1) 

2 N  ( i , j ) c A  x A i c A  

where the external magnetic field h is a real number. The energy function 
of the randomly dilute CW model (RDCW) is obtained from (1.1) by 
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choosing the couplings Jid as random variables normalized such that 
~:(Ji, j) = 1/(2N). An elementary implementation of the notion of dilution 
consists then in defining Ji, j = ei, J2Np, where e u ---- {ei, j}i= 1,...,X;j= 1,...,N are 
independent and identically distributed random variables (i.i.d.r.v.'s) with 
P(ei, j = 1)= 1 -P(e i ,  j = 0 ) =  p. The Hamiltonian then reads 

1 (1.2) HN(eN, a)-- 2Np Z e~,ja,aj-h Z a, 
( i , j )~ A x A ie  A 

While this setup suffices to define the RDCW model for a fixed N, 
since we are interested in taking limits as N goes to infinity later on, we 
need to be more specific on the random variables e;,j as functions of N. 
This is somewhat more subtle than usual, due to the fact that we will allow 
p to be a function of N. There are several ways to set up the probabilistic 
environment for this. We prefer, however, the following: Let us fix a 
function p: N --+ (0, 1 ] and let us first consider a fixed (i, j)  ~ N x N. We 
introduce a probability space (~2~,j, S~,j, P), with D~,j = {0, 1 } ~, such that 
{ei, j(N)}Ns ~ is an (inhomogeneous) Markov chain on this probability 
space, with transition probabilities given by 

P(~i,j(N) = 01 e , , j (N-  1 )=0 ) - -  1 

P(e,,j(N) = 11 e , , j (X-  1 ) = 0) = 0 
(1.3) 

P(ei,~(N) = 0 [e~d(N-- 1)= l ) =  1 - q ( N )  

P(e~,j(N) = 1] e~,j(N- l ) =  l ) =  q(N) 

where q(N) is chosen such that P(ei, j ( N ) =  l ) =  p(N), that is, q(N), that 
is, q ( N ) - p ( N ) / p ( N - 1 ) .  Note that this setup constrains p to be a non- 
increasing function of N. Now we introduce the product probability space 
(~, s,  p~): 

/ \ 

k i , j ~ N •  i, j E N •  i , j ~ N •  / 

and we consider eN=--{e~,/N)}~=I,...,N;j--1,...,N as a family of random 
variables on the product cylinder set {~o ~ s co~,j ~ s V(i, j)  ~ A • A }. 
From now on we write e instead of eN provided there is no danger of 
confusion. The above construction has the virtue that it yields the maximal 
probability for e~,j(N) to equal e~, j(N-1) for the given marginals. In 
particular, this probability is one if p(N) is constant. 

The RDCW model is then defined by the probability measure ~;h(e)  
which assigns to each configuration a e F N the probability 

e x p [ -  fiHhN(e, a)]  (1.5) 
N~h(e, a ) =  2Nz~)h(e ) 
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where fi > 0 is the inverse temperature and where the partition function 
Z~h(e) is given by 

Z~h(e)=  y, exp[--fiHhN(e, fla)] (1.6) 
2 N 

a e  F N 

Note that these last three quantities are random variables on the proba- 
bility space (t2, X, P~). Before giving the statement of our main theorem, 
we need the following notations: let m u be the block spin variable 
m u = m u ( ( Y ) = - ( t / N ) ~ ? = l ( Y i ,  ~)C~ N the set of all its possible values, 
5~ N = { - 1, - 1 + Z/N, . . . ,  1 - Z / N ,  1 }, and m~h(e) the expectation of M N  

with respect to ~r We will also exploit throughout the paper some 
well-known results of the standard CW model. For the sake of convenience 
we have summarized them in an appendix. The quantities referring to the 
standard CW model will be marked with a tilde. Finally, defining the finite- 
volume free energy as 

1 
fN~'h(~)---- --fl--~ln Z ~ h ( e )  (1.7) 

we are ready to announce the following result: 

T h e o r e m  1. Let p 6  (0, 1] be a nonincreasing function of N such 
that p N T  ~ as NT or. Then, almost surely with respect to P~, the following 
results hold: 

(i) For all f l > 0  and all h~ 

lim fN~'h(e) = Y(; h (1.8) 
Nl"oo 

where 37~;h is the infinite-volume free energy of the standard CW model. 

Let 5 s  be the law of m N under ~q~h(S) and let 6x denote the 
Dirac measure concentrated on the point x. Denoting respectively by 
rh ~'(+) and rh ~'(-) the largest and smallest solutions of the equation 
m = tanh(flm), we have the following result. 

(ii) Forh>~0  

lim lim L~{mN}={ 3~ if 0~<fl~<l (1.9) 
hi. 0 Ntoo 6rTflL{+) if fl~>l 

The same result holds for h ~< 0 with rh ~'(+) replaced by rh p'(-). 

(iii) F o r h = 0 a n d f o r a l l f l > 0  

lim ~ { m u }  : 1 1 ~6~,,.1+1+ ~ 6,~t~.l ) (1.10) 
N~oo 

(but note that for fl~< 1, rh~'(-)=rh~'(+)=0).  
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Remark. The condition pN~ vo appears to be the weakest possible 
for the theorem to hold. It implies that the mean coordination number of 
each site goes to infinity as the system size diverges, that is, from a physical 
point of view the dimensionality of the system goes to infinity. On regular 
lattices, it has ben proven before (see, e.g., refs. 20, 21, 12, and 2) that the 
mean Curie-Weiss free energy is obtained in the limit of infinite dimension. 

Remark. In Section 4 we will show that the analog of Theorem 1 
can be proven for a much larger class of distributions of the e(/. For 
transparency and clarity we prefer, however, to first present the proof in 
this specific context. 

The remainder of this paper is organized as follow: we show in 
Section2 that the Hamiltonian (1.2) of the RDCW model can be seen, 
on a subset of f2 of P~-measure one, as a small perturbation of the 
Hamiltonian (1.1) of the standard CW model. Therefore the proof of 
Theorem 1, given in Section 3, essentially follows from a standard mean- 
field treatment. An interesting issue of the method developed for the study 
of the RDCW model as defined in (1.2), (1.5) is that it applies for more 
general definitions of the random couplings Ji.j and in particular does not 
require them to be ferromagnetic. In Section 4 we show how the method 
provides general conditions on the distribution of the coupling under which 
the results of Theorem 1 hold, and detail some specific examples, including 
Gaussian couplings. 

2. B O U N D S  ON THE H A M I L T O N I A N  

The main idea behind the proof of the theorem is that on a certain 
subset ~2"c~2 which will be shown to be of P~-measure one, the 
Hamiltonian H%(e, ~) of the RDCW model can be approximated by the 
Hamiltonian/~%(cr) of the standard CW model up to a small perturbation 

h ~hN(e, ~)-- HN(e, O) -- H%(a) which uniformly in a will be o(N). Therefore, 
we will be allowed to give to the dilute model a standard mean-field 
treatment. 

To determine the suitable set s we proceed in the following way: let 
us consider the square array {aiaj}(i.j)~A• whose elements are the 
products criaj of two spins for all possible pairs (i, j) ~ A x A. This aray is 
equivalently given by the partition of A x A into two subsets A x A = 
A f(a)uA[(c~) containing respectively the "alligned" and "nonaligned" 
pairs of spins: 

A S ( a ) =  {( i , j )~A x A t o' ,aj= 1} 
(2.1) 

A z ( a ) =  { (i, j)~ A x A laiaj= -1}  
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Notice that the cardinality of the subsets A+(a) and A z ( a  ) only depends 
on the variables mN(~)= ( l /N)Z~-1  ai: 

1 + m2N(~) N2 
]Af (o-)[ 2 

(2.2) 
1 - -  mZ(a) N2 

1A2(~r)[ = 2 

Using this partition, we can rewrite the Hamiltonian (1.1) as 

'{ } HhN(e, a ) =  --2--~p 2 2 gi, jZ { ( i , j )  e A f ( a ) } -  ~ gi, j 
( i , j )e  A x A ( i , j )e  A x A 

+ h ~  er i 
i~A 

(2.3) 

w h e r e  )~{(i,j)~A+(a)} is the characteristic function of the set A+(~). Now let 
us define the subsets ~e~ N C (2 as the subsets for which the first two sums in 
(2.3) remains close to their mean value, i.e., 

a e F  N ( i , j ) ~ A x A  

(2.4) 

where 7 = 7(N) is a decreasing function of N such that 7(N) $ 0 as NT oo. 
Then if ? is appropriately chosen we have that for N large enough, and 
how large will depend on the sample, almost all eo will belong to ~u- More 
precisely, defining the subset ( 2 " c  (2 as 

(2* = {~o ~ (2: 3No s.t. VN>~No, ( - O E ~ N }  (2.5) 

we have the following result. 

P r o p o s i t i o n  1. Let p r (0, 1) be a nonincreasing function of N such 
that pNT c~ as NI" oo. Let 7 be a positive, strictly decreasing function of N 
such that 7(N)>~ 3/(pN) 1/2 and 7(N)~.0 as NT oo. Then 

P~((2*) = 1 (2.6) 

where E2* is defined in (2.5). 

Remark. To avoid useless discussions the case p-= 1 in Proposition 1 
has been eliminated since it corresponds to the standard CW model for 
which Theorem 1 is already known. 

-c 
In order to prove the proposition we need the following lemma: let FJ N 

denote the complement of ~N in (2; then we have the following result. 
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I.emma 2.1. 
N large enough, 

P~(ON) ~< Cox/N [exp( -- Nc + ) + exp( - Nc- )] 

where Co, c +, and c -  are strictly positive constants. 

Proof. By definition 

~ c  
Pe(ff2U) 

\ ~ E F  N ~ ( i , j )  e A  •  

Let p and 7 be defined as in Proposition 1. Then, for 

(2.7) 

(2.8) 
which is bounded by 

P~(f2u)<~ ~ {P~( ~, ei../Z{u,n~A~(o,}>~P(l+7)tAf(~7)') 
a ~ P  N ( i , j ) E A  x A  

(i j )  e A x A  

Using now the exponential Markov inequality (3'22) and remembering 
that ~i.j are i.i.d., we get 

P~( ~ ei, jZ{u,j)~A~(~)}>~P(I+y)IA+(a)t) 
( i , j )  e A •  

~< inf e x p { - I A f ( ~ ) l [ p ( 1  + 7 ) t - l n  E~(e~"J')] } (2.10) 
t~>0 

which by a direct calculation leads to 

P~( ~'~ ~i, jZ{U,j)~A~(o)}>/p(l+7)lAf(~r),) 
(i, j )  ~ A • A 

~< exp[ -IA~-(~r)l Ip(1)(p(1 + 7))] (2. l l) 

where Ip ~l) is defined on [-0, 1 ] by 

i(pl,(x) = x ln (p) + ( l _ x) l n (1__77)l-x (2.12) 

Similarly we have the bound 

( i j )  e A x A  

exp[ - I A  + (a)l I~ll(p(1 - 7))] (2.13) 

822/72/3-4-16 
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Therefore, putting (2.12) and (2.13) together with (2.9) gives 

~ c  P~(t2N)~< ~ {exp[--IAf(~)l Ip(1)(p(1 +~/))] 
O, ~ / ~ N  

+ exp[ - IA + (a)l Ip(1)(p(1 - 7))] } (2.14) 

Now, making use of the fact that 

l+rn2(~r) 2 
N IA~-(a)[ - 2 

only depends on the variables mN(6 ) - - - - ( I / N ) z N = ,  ai, we can rewrite the 
s u m  

{exp[ -IA2~(a)l Ip~l)(p(1 + 7))] + exp[ - I A f  (a)l Ip(1)(p(1 - 7))] } 

(2.15) 

A=S 
a e  F N 

a s  

A= Y" (�89 [ - ( 1  2 m2) N2i~p~,(p( 1 +7))]  
m E ,c~ N 

(2.16) 

[-Recall that 5PN denotes the set of values the variable mN(a) may take.] By 
the Stirling formula the binomial factor is equal to 

N lnN+ru] (2.17) (�89 l + m)N) = exp [ -  Nl(2)(m) + Nln2- ~ - 

where rN=O(1/N) and i(2)is defined on [ - 1 ,  1] by 

I<2)(x) = ~-~- ln( l - x) + ~-~f- ln(1 + x )  

Therefore 

x ~ exp I~ll(p(l+7))-NI(2)(m) 
m ~ . ~  2 

N <11 2] In N +exp{-N[~Ip  ( p ( 1 - 7 ) ) - l n  J --~-'+'rN} 

I N2m2 1 x ~, exp I(1)(p(1-y))-NI(2)(m) 
m E ~9ON 2 

(2.18) 

(2.19) 
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To bound the sums in (2.19) let us notice that both Ip (~) and 1 {2) a r e  

positive convex functions. Moreover, I(2)(m) attains its infimum at m - 0 ,  
so that 

[ N2m2I(pl)(p(l+7))--NI(2)(m)l<-.15~ (2.20) exp 2 
me 5~ 

and 

N + I  (exp I N  Ip(n(p(1 - l n  P~(~v) ~ - - ~ - ( e x p  r x ) { - N  +7)) 2]} 

+exp{-N[NI(pn(p(l+j)-ln2]}) (2.21) 

In order to complete the proof, we are left to show that for p and 7 defined 
as in Proposition 1 and for N large enough so that p(1 + 7 ) e  [p, 1] and 
p ( 1 - 7 ) e  [0, p], the exist two positive constants c + and c-  such that 

1NI(pl)(P( 1 + 7 ) ) -  in 2/> c + 
(2.22) �89 1 - 7)) - I n  2 ~> c 

To do so, let us rewrite I(p~)(p(1 +7)) and Ip(1)(p(1-7)) in the form 

P ? 

(2.23) 
and 

Now, using the series expansion of the logarithm, we have 

(1 +x)  ln(1 + x ) = x + Z  
( - -  J~)n+ 1 x n +  1 

1 n(n+ 1) 
for 

x n +  1 
(1 + x ) l n ( 1 - x ) =  - X + ~ n ~ +  ]) 

1 

which implies the two following pairs of bounds: 

( 1 - x )  ln(1-x)~> - x  

(2.24) 

Ix[ < 1 (2.25) 

(2.26) 
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and 
(l +x )  ln(1 +x)>jx 

X 2 

( 1 - x )  ln(1-x)>~ - x + ~ -  
(2.27) 

valid for any x e  [0, 1]. Since p(1 +7)E [p, 1] and p ( 1 - 7 ) e  [0, p],  both 
7 and [ p/(1-P)]7 belong to [0, 1]. Thus, on one hand, (2.23) together 
with (2.26) gives 

I~I'(P(I+7))>I-PIT+~(1-3)I-'I-P)(lP~pT) 

=p?- 1- 

72 
/> P 7 (2.28) 

while on the other hand, (2.24) and (2.27) give 

I(pl)(P(l+7))>--'(1-P) 7 +P - 7 + ~ -  = P  ~- (2.29) 

Therefore we get the bounds 

1 1 >~ pN~ 5NI(p )(p(1 +7)) 
o 

(2.30) 
1 72 

NI(pl)(P - 7))/> p N  -~ 

and since 7 decreases to zero more slowly than 3/(pN) ~/2, there exist 
positive constants c + and c-  such that (2.22) holds. Thus the lemma is 
proven. II 

Proof of Proposition 2. We want to show that P,(f2*)= 1. By 
definition, 

P~((2*) ~ 1 - P~(((2*) c) (2.31) 

and 

and thus 

(g2*)c={coef2:VNo<~,3N>>.Nos.t.~oe(~2~v) ~} (2.32) 

0~< P~((12*)c)= Pc( li---~ (~NY) (2.33) 
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The Borel-Cantelli lemma (3) states that P~(l imN_~(~N) c ) = 0  if 
ZN P}(ON)C)< Oe and by Lemma2.1 this last condition holds and the 
proposition in proven. I 

From now on we will consider that the function ? is chosen such that 
it satisfies the properties (i) and (ii) of Proposition 1. Returning now to the 
problem of bounding the Hamiltonian (1.1) and remembering that 

~fhx(a, e) = Hhu(a, e) -- ff-Ihu(a) (2.34) 

--h where H u is the Hamiltonian of the standard CW model, we have the 
following result. 

L e m m a  2.2. For all coef2* and all 0 - ~ F  N 

I ~ v ( a ,  e)[ ~< ~TX (2.35) 

Proof. This directly follows from the definition of ~U together with 
the decomposition (2.3) of the Hamiltonian Hhu(a, e). | 

3. PROOF OF THE T H E O R E M  

With the probabilistic display provided in the previous section, we are 
now ready to prove our main theorem. The essential idea is that on the set 
s the difference between the Hamiltonian and the averaged Hamiltonian 
is a small, uniformly in o-, that it does not contribute to the thermodynamic 
limit. 

Proof  of  Part (i). By definition, 

1 1 - h  f 
f~h(e)  = - - ~ l n ~ r N ~ - ~ e x p { - - f i [ H N ( a ) + . g f N ( a ) ]  } (3.1) 

Now, for all co s ~2" Lemma 2.2 brings the bounds 

e 3~2tiN'/(N) ~ e-PW%(~) <~ e 3/2tiNT(N) (3.2) 

Thus 

]f~)h(e) _y~h]  ~< ~7(N) (3.3) 

and the proof is completed by using Proposition 1. | 

To pr6ve parts (ii) and (iii) of Theorem 1 we need the following 
lemma: 
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k e m m a  3.1. Let ~ h ( e )  and ~ h  be the measures on SN induced, 
respectively, by ~ h ( e )  and ~ h  Under the map 

F N ~ sPN 

a~--~m=mN(a ) 
(3.4) 

Then for all co ~ f2* and all m E SeN 

e-- 3/ZBNv(N) ~ h ( m  ) <~ ~ h ( 8 ,  m )  <~ ~ h ( m  )e + 3/2flUy(U) (3.5) 

where 

~ h ( m )  _ exp[--flNp~'h(m) + rN] (3.6) 
~m EN~N exp[ -- flWp~'h(m ) + r N] 

where Pr denotes the free energy functional of the standard CW 
model (see Appendix) and r u = O(1/N). 

and 

Proof of  Lemma 3. 1. 

~h(e ,  m)= Z 
a ~ I'N: 

mN(a)=m 

By definition, 

o) 

exp{ - fl[-H)v(a) + ~fhu(e, a)] } 
= Z (3.7) 

mN(a)=m 

exp[--flHhu(a)] 
~ h ( m )  = ~N (3.8) 

~ -- Z~rNexp[--fiFthu(a)] 
mN(a) =m 

Therefore, for all co e ;2", the bounds (3.5) are obtained by inserting (3.2) 
in (3.7) and using (3.8). Now, since B%(a) only depends on the variables 
raN(a), (3.8) can be written as 

N +hm,/m~y.(�89 ~ h ( r n ) = ( � 8 9  1 + m ) N ) e  #N(m2/2 N 

(3.9) 

which together with (2.17) gives (3.6). | 

Proof of Part (ii). It is enough to show that, for any continuous 
bounded function g ~ ~b(5~ N, ~) and all co e ~2" 

lim lim ~ g(m)~h(r if 0~fl~<l 
h~O N'[COrr, e5~ N ~g( l~  fl'h) if fl>~l (3.10) 



Curie-Weiss Model with Random Couplings 655 

To do so, we denote by rh ~'h the unique minimum of pz, h and first 
introduce the set 

B= {m+ Sfu: [m--the'hi <Q(N)} (3.11) 

Here the function 0(N), which will be chosen appropriately later, is a 
decreasing function of N satisfying o(N)$O as NT ~ .  Next, we write 

, ~  [g(m)--  g(rh~'h)] ~ h ( e ,  m) 
E6,~ N 

<~ ~ tg(m)- g(r~a'h)l ~)h(e, m) + ~ Ig(m)--g(rhn'h)l ~ ( ~ ,  m) 
r n ~ B  m E B  c 

(3.~2) 

where B C denotes the complement of B on 5PN . By continuity of g, for m in 
B and for any arbitrarily small ~ we have that [g(m)--g(rha'h)l<~ 
provided that N is large enough. On the other hand, since g is bounded, 
I g(m) - g(rha'h)l < 2 l] gH ~, where II gll ~ ~- SUPmsy N I g(m)l. Therefore 

,,~[g(m)--g(ffta'h)]~h(g, m ) E , 9 o N  ~<g+211gl[oo ~ ~)h(~,m) (3.13) 
m E  B c 

and we are left to show that, for e) ~ (2", the measure of B c with respect to 
~ h ( e ,  m) decreases to zero as N tends to infinity. By Lemma 3.1 we have, 
for N large enough, 

-,~;h(e, m) ~< c' exp[2flNT(N)] 
m E  B c 2m S 5aN exp [ -- ~NP~'h(m)] 

(3.14) 

where c ' > 0  is a constant. Now, remembering that rh a'h realizes the 
minimum of pa, h, 

~ h ( e ,  m) ~< c' exp[-2/~NT(N)] 
~'n E B c 

X E X { m e B  c} exp{-/~U[PU, h(m) -- Pa'h(rh/~'h)] } 
m E  ~ N 

(3.15) 

and since there exists a strictly positive constant c such that 

~'a'h(m) - P~'h(rkP'h) >~ c(m --/~/~,h)2 (3.16) 
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the sum in the right-hand side of (3.15) is bounded by 

2 X{  mcBc}  exp{ --flU[[T'B'h(m) -- P~'h(rh~'h)] } ~< 2N exp[- -cflNoz(u)] 
m ~ N  (3.17) 

Finally, putting (3.17) together with (3.15) gives 

2 ~ h ( e , m ) ~ < 2 c ' e x p  - f i N  c02(N) - 2 7 ( N ) + - ~ J ~ )  (3.18) 
m ~ B  c 

and this last bound converges to zero as N tends to infinity that 0(N) is 
chosen such that 

In N 
c02(N) > 27(N) + --27-;-~ (1 + tl) (3.19) 

p l y  

+ Z 
m~B(+) 

for some real J/> 0, which can be done for any c. Thus (ii) is proven by 
combining this result with (3.12), Proposition 1, and the fact that 
limb +o rhBh = rh~'(+). I 

Proof of Part (iii). The proof of part (iii) essentially follows that,of 
part (ii). We will only give the outline of the case fl > 1; the case fl~< I is 
obtained following a similar scheme. We want to show that, for any 
continuous bounded function g c (db(SPN, ~) and all oJ 6(2" 

lim ~ g(m)~~ ~'(-)) (3.20) 
N T c~ m~ SPN 

To do so, let us define the set B + and B -  as 

O + = {mE.~fN : Im--rh~'(+)l <0(N)}  
(3.21) 

B -  = {m 6 ~fN: Im -- rht~'(-)l < 0(N)} 

where •(N) is a decreasing function of N which tends to zero as N tends 
to infinity. Then, decomposing the sum in (3.20)as 

Z g ( m ) ~ ~  
rn ~ ~,~N 

= Z g(rh~'(+))~~ e,m)+ Z g(rh~'(-))-~)~ 
m~B(+) m 6 B ( - )  

[g(m)_ g(~,.( + )) ] .~o(~, m) 

+ 
mEB( ) 

[g(m)--g(rh ~'( ))] ~ ~  m) 

+ ~ g(m) ~ ~  m) (3.22) 
m ~ ( B ( + ) u  B(-))  c 
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we get 

{g(m)- [g(rh ~'(+)) Z(m ~(+)) +g(fits'(-)) Z(m~B(-)}] 
m E SfN 

<~ ~ rg(m)--g(rn~'(+))l ~)0(e,m) 
rn E B(  + ) 

+ ~ Ig(m)- g(rh~'(-))l ~~ m) 
rn E B ( -  ) 

+ ~ [f(m)l ~;~ m) 
m ~ ( B ( + ) u  B ( - ) )  c 

[ 
~:~ m) 

~ C +  Ilgll ~ ~ ~ o ( ~ ,  m) (3.23) 
m E ( B ( + ) u  B ( - ) ) c  

where by continuity of g, ( can be made arbitrarily small provided that N 
is large enough. Splitting again the sum of the last term in (3.23), we get 

]g(m)l ~ ~  m) 
m ~ ( B ( + ) ~  B ( - ) )  c 

m ~ (B  (+))c m ~ (B  ( - ) ) c  
m ~ > 0  rn~<0 

(3.24) 

and we have already seen that choosing ~(N) appropriately, each of 
these sums converges exponentially fast to zero since for each half-space 
{mESoN" rn~>0} and { m ~ 0 } ,  rh ~'(+) and rh ~'(-) realize, respectively, the 
global minimum of p~,o. Therefore we have shown that for co~f2* the 
right-hand side of (3.23) converges to zero as N tends to infinity. To deal 
with the left-hand side, just notice that by symmetry 

lira ~ )~(m~B(+)~ ~ ~  e,m)= lira ~ X(,~B( , )~~  e,m)=�89 (3.25) 
N ~ ~ m ~ SaN N ~ oo m ~ ~9"~;v, 

Thus, for fl > 1, (iii) is proven. | 

4. G E N E R A L I Z A T I O N S  

It is clear that the proof of Theorem 1 does not really require all the 
assumptions we made on the random variables %. In fact, one only needs 
to check whether their distributions "satisfy conditions allowing one to 
prove Propostion 1, i.e., in particular whether the large-deviation estimates 
(2.13) and (2.14) hold. 
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Here we want to exhibit sufficient conditions in two simple and 
illustrative contexts: 

(i) Gaussian random variables. 

(ii) Random variables for which the Bernstein conditions are 
satisfied. 

From a physical point of view it is interesting to notice that these 
conditions will, in general, not imply that the couplings are ferromagnetic. 

We will consider the following setting: Let (f2, S, P) be a probability 
space such that for all N e N there exists a family eN~- { ~i,j (N) }i= 1,..., N;j = 1,..., U 
of i.i.d.r.v.'s on f2 taking value in R with distribution PN, which is allowed 
to depend on N. We denote by P~u the product measure with identical 
marginals PN:  PeN = I- I ( i , j )~A xA PN" 

Let us introduce the following two quantities that characterize PN: 

(i) Let pp(N)  be the expectation with respect to PN, i.e., 

pp(N)  = f~ epN(de) (4.1) 

We will always assume pp(N)  to be strictly positive, nonincreasing 
function of N. 

(ii) Let co~(t ) denote the functions 

Cou(t) = ~'log ~_ou(exp(tei j)) 
( +c~ 

if Epu(eXp(teid)) exists (4.2) 
otherwise 

We now define the Hamiltonian h HN(e , a) as in (2.1) through the couplings 
Ji, j ~ ei , /2pp(N) N: 

1 h (4.3) H N ( e  , 0")= E ei, j f f i f f J  - h  E a i  
2pp(N ) N (~,j) ~ A • ~ i~ A 

One then wants to find conditions on the distributions PN under which, for 
N large enough, the Hamiltonian (4.3) can be written as a small perturba- 
tion of the standard CW Hamiltonian Hhu(Cr ) with probability with respect 
to P~u exponentially close to one in N. To do so we proceed as in Section 2, 
defining for N~ N the set ~U as in (2.4): 

(2N= 
a E F N 

co 6 (2: (i,j)~ eg, jZ{(i,j)~A~+l~o)~-pp(N)lA~+)(a)[ 
~A• 

~< 7pp(N)[A (2+)(a)[ } (4.4) 
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where 7 - 7(N) is a strictly decreasing function of N satisfying 7(N) ~ 0 as 
N 1" oo. We have the following result. 

Propos i t ion  2. If there exists a function 7 satisfying the above 
conditions such that for N large enough PN satisfies 

NIpN(pp(N)(1 + 7)) > In 2 
(4.5) 

NIpN(Pp(N)(1 - 7)) > In 2 

where I,N(x ) is the Legendre-Fenchel transform of cp~(t), 

Ipx(x)=sup{tx-cpN(t )} ,  x ~ N  (4.6) 
t c R  

then there exists a strictly positive constant tr such that 

P~(~N)  ~> 1 - e-~N (4.7) 

Before giving the proof of the proposition, we detail explicitly the 
conditions (4.5) on some examples. Notice that they clearly will require the 
existence of the Laplace transform of PN for a sufficiently large range of t. 

Example  1. Gaussian Coupl ings  

L e m m a  4.1. Let PN be the normal distribution Jff(pp(N), a(N)). 
If Np2(N)/a2(N)T oo as NT o% then there exist functions 7 such that (4.5) 
holds. Setting co(N)= [Np2(N)/a2(N)] 1/2, we can choose any function ? 
decreasing to zero more slowly than [2 ln(2)]m/co(N). 

Proof. A standard calculation shows that CpN(t ) = �89 po(N)t. 
For any real x the sup in (4.6) is attained at t - - [ x - p p ( N ) / a 2 ( N )  and 
IpN(x) = [x-pp(N)]  2/2a2(N). Moreover, IpN(pp(N)(1 + 7)) = Ip~(pp(N)(1 - 7)). 
Thus the conditions (4.5) reduce to Np2p(N)72(N)/a2(N)> 2 ln(2). | 

R e m a r k .  In the particular case c r (N)= l  the Hamiltonian (4.3) 
reads 

1 
N Z e i , / a i a j - h  Z ai (4.8) 

Hhu(~, a ) -  2CO(N),,/N (i,j)~A• i~A 

where co tends to infinity as slowly as desired and pp(N) is allowed to go 
to zero as fast as co(N)/x/-N. This situation may look at first glance to be 
very close to the Sherrington-Kirkpatrick model of spin glasses, where we 
would have po(N)=-0 and co(N)= co--const. Our results of course show 
that with the constraints we have o n  pp(N) and co(N), the properties of the 
model are already totally different from that of a true spin glass. 
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Remark.  The conditions on the distributions PN can in this case 
easily be translated in te rms  of the eigenvalues of the random matrix eN as 
the existence of a large enough gap between the largest and the second 
largest eigenvalue. 

Example 2. Bernste in 's  Condi t ion  

L e m m a  4.2. Let PN be such that the centered variables e.i, j -  pp(N) 
satisfy the Bernstein condition, (17) i.e., 

Ep(l~i j _  pp(N)[k) kl ' <~ 2 cr2(N) c~- 2 (4.9) 

for some constant 0 < c < oe and all k/> 2. Then, if NpZp(N)/a2(N)~ oo as 
NT oe, and if there exists 0 < ~ < 1 such that 

1 4c 2 2 -  

N a  2 1 - a  
- -  In 2 ~< a2(N) (4.10) 

then (4.5) holds with 7 chosen such that 

2 -  ~ cr2(U) ~1/2 ~ aZ(x ) 
In 2 ] - _ ~  Npp--~) j <~?(N)<<'2Cpp(N ) 

ProoL Note that 

(4.11) 

xt -- cp(t) = Ix -- pp(N)] t - In 0- e E'-p~(')3' 

Now, using the Bernstein condition, (3) one gets that 

(4.12) 

In ~ e E~ pp(N)]t ~ o.2(N)t 2 
2(1 - Itcl) 

(4.13) 

for all t s.t. Itcl < 1. [Note that we could, of course, also impose the bound 
(4.13) in the lemma rather than the Bernstein condition.] Hence 

xt - Cp(t) <~ [x -- pp(N)] t - ~r2(N) t 2 
2 (1 -1 tc l )  

(4.14) 

Now denoting by t * = t * ( x ) =  [x -pp(N)] /aZ(N)  the value of t that 
realizes the supremum of the function [ -x -  pp(N)] t -  ~2(N)t2/2, we get 
that 

[ x - p p ( N ) ] 2 (  1 ) (4.15) 
Ip(x)>~ a2(N ) 1 2(1 - It*cl) 



Curie-Weiss Model with Random Couplings 661 

Now, as long as It*eJ ~<~/2 with ~ <  1, we have 

Ix - pp(N)] 2 1 - 
Ip(x) >~ aZ(N ) 2 - m ~ > 0  (4.16) 

Thus 

Ip(pp(N)(1 + ~ ~>pe(N)y22 
- -  " ' "  o ' 2 ( N )  2 - -  

(4.17) 

and 

p,(N)~ 
It*(pp(N)(1 ---7))[-  a2(N) (4.18) 

The condition It*cl ~ ~/2 now simply becomes 

:~ a2(N) 
7 <~ -2c pp(N) (4.19) 

and the conditions (4.5) reduce to 

Np~(N)72 1 - ~ > In 2 
a2(N) 2 - 

(4.20) 

Conditions (4.19) and (4.20) now yield the bounds (4.11). | 

After these examples we now come of the proof of Proposition 2. 

Proof of Proposition 2. This proof is essentially identical to the part 
of the proof of Lemma 2.1 that leads to the bound (2.21). We will restrict 
ourselves to showing that the bound (2.11) becomes 

~<expE-IA (+ 2 ~(,~)l?,,~(p~(N)(1 +~,)) l  (4.21) 

where Ip,~ is defined in (4.6). A similar proof yields 

P~u( ~ ei.JZ{(i.J)~4+~(~)I<~pp(N)(1-7)IA(2+)(a)I) 
(i,j) e A x A  

~< exp[--[A(2 + )(a)[ Ipu(Pp(N)(1 -- 7))] (4.22) 
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which replaces (2.13). First, using the exponential Markov inequality, we 
have 

PeN ( ~, ~i,j)~{(i,j)eA[+)(r ~ Po(N)(1 + 7)IA (2 + )(a), ) 
(i j ) ~ A x A  

~< inf exp{-IA(2+)(~r)l [po(N)(1 +?)t--CoN(t)] } (4.23) 
t>~0 

where CON(t ) is defined in (ii). Next we want to show that 

sup {pp(N)(1 + ?) t -  CON(t)} = IoN(pp(N)(1 + 7)) 
t>~O 

(4.24) 

To do so we need a well-known property of the function ION (for a proof, 
see, e.g., ref. 5), namely that for any x ~ R ,  IpN~>0 and Ipu=O if and only 
if x = Po(N). 

Now by Jensen's inequality CON(t )>~pp(N) for all t e N. Thus for t 
strictly negative and 7 nonzero 

pp(N)(l+?)t-cpN(t)<,.{po(N)(l+7)-po(N)}t=po(N)Tt<O (4.25) 

Therefore we see from the positivity of IoN that the supremum in the 
formula for IoN c a n n o t  occur for t < 0. Finally, putting (4.24) together with 
(4.23) gives (4.21). I 

From here on it is clear that all the results from Sections 3 and 4 carry 
over under the assumptions of Proposition 2. 

A P P E N D I X  

We give here the definitions and results for the standard Curie-Weiss 
model that we use throughout the paper. We refer to ref. 5, w where a 
complete study of the model is presented. With the notation of Section 1 
and given the Hamiltonian 

1 
/4~qh(rr)= 2N ~ a ; a j + h  ~ o'i (A.1) 

(i,j) e A x A  l eA  

the Curie-Weiss model is defined by the probability measure aJ~)h which 
assigns to each configuration a e F N the probability 

f~)h(a) = exp[ --/~H~9(a) ] (A.2) 
2N2 ~.h 

where 2~; h is the normalization Y'.o~rN {exp[--f iH~h(a)]  }/2 N. 
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The following results are found: 

(i) I f y ~  h denotes the finite-volume free energy, 

1 - ln2  h 

then the infinite-volume free energy f ~ f  is equal to 

jT~h= inf f/~'h(m) 
m ~  

(A.3) 

(A.4) 

where the free energy functional p~,h is defined by 

1 
P~'h(m ) = ~ l~l 2 -1- hm - ~ I(m ) 

and 

{__~___ , l + m  
I (m)=  1 - m  l n ( 1 - m ) + - - - ~  ln(l +rn) if Im[~<l 

if I m l > l  

(A.5) 

(A.6) 

(ii) 
equation 

The points m giving the infimum in (A.4) are solutions of the 

m = tanh [/~(rn + h)] (A.7) 

For 0 </3 ~< 1, this equation has a unique solution rh ~'h which is zero for 
h --- 0. For/~ > 1 and h # 0 it has a unique solution r~ ~'h with the same sign 
as h. F o r / ~>  1 and h = 0  it has three solutions, n ~ ' ( + ) > r ~ ' h = 0 > r h ~ ' ( - (  
Of these three solutions only rh ~'(+) and ffr ~ realize the infimum in (A.4). 

A C K N O W L E D G M E N T S  

V.G. thanks Prof. Joel Lebowitz and the Mathematical Sciences 
Research Center of Rutgers University for their warm hospitality. We 
also thank Pierre Picco for a critical reading of the manuscript. We are 
indebted to two referees for valuable remarks. This work was partially 
supported by the Commission of the European Communities under 
contract No. SC1-CT91-0695. 

R E F E R E N C E S  

1. J. T. Chayes, L. Chayes, and J. Fr6hlich, The low temperatures behaviour of disordered 
magnets, Commun. Math. Phys. 100:399 (1985). 

2. O. Costin, The infinite-coordination limit for classical spin systems on irregular lattices, 
J. Phys. A 19:2953 (1986). 



664 Bovier and Gayrard 

3. Y. S. Chow and H. Teicher, Probability Theory (Springer-Verlag, Berlin, 1978). 
4. V. I. Dotsenko and V1. I. Dotsenko, Adv. Phys. 32:129 (1983). 
5. R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer-Verlag, Berlin, 

1985). 
6. R. S. Ellis and C. M. Newman, The statistics of the Curie-Weiss models, J. Stat. Phys. 

19:149 (1978). 
7. R. S. Ellis and K. Wang, Limit theorems for the empirical vector of the Curie-Weiss-Potts 

model, Stochastic Processes Appl. 35:59 (1990). 
8. J. Fr6hlich, Mathematical aspects of the physics of disordered systems, in Proceedings of 

the 1984 Les Houches Summer School 'Critical Phenomena, Random Systems, Gauge 
Theories,' K. Osterwalder and R. Stora, eds. (North-Holland, Amsterdam, 1986). 

9. V. Gayrard, The thermodynamic limit of the q-state Potts-Hopfield model with infinitely 
many patterns, J. Stat. Phys. 68:977 (1992). 

10. H. O. Georgii, Spontaneous magnetization of randomly dilute ferromagnets, J. Stat. Phys. 
25:369 (1981). 

11. H. Koch and J. Piasko, Some rigorous results on the Hopfield neural network model, 
J. Stat. Phys. 55:903 (1989). 

12. H. Kesten and R. Schonmann, Behaviour in large dimensions of the Potts and Heisenberg 
model, Rev. Math. Phys. 2:147 (1990). 

13. A. W. W. Ludwig, Phys. Rev. Lett. 58:2388 (1988). 
14. J. M. G. Amaro de Maros and J. F. Perez, Fluctuations in the Curie-Weiss version of the 

random field Ising model, J. Stat. Phys. 62~587 (1991). 
15. J. M. G. Amaro de Matos, A. E. Patrick, and V. A. Zagrebnov, Random infinite volume 

Gibbs states for the Curie-Weiss random field model, J. Stat. Phys. 66:139 (1992). 
16. M. Mezard, G. Parisi, and M. A. Virasoro, Spin-Glass and Beyond (World Scientific, 

Singapore, 1988). 
17. V. V. Pettrov, Sums oflndependant Random Variables (Springer-Verlag, Berlin, 1975). 
18. R. Shankar, Phys. Rev. Lett. 58:2466 (1987). 
19. D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35:1792 (1972). 
20. C. J. Thompson, Ising model in the high density limit, Commun. Math. Phys. 36:255 

(1974). 
21. A. Pearce and C. J. Thompson, The high density limit for lattice spin models, Commun. 

Math. Phys. 58:131 (1978). 
22. S. R. S. Varadhan, Large Deviations and Applications (Society for Industrial and Applied 

Mathematics, Philadelphia, Pennsylvania, 1984). 
23. K. Ziegler, NucL Phys. B 280:661 (1987); 285:606 (1987). 


